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Abstract 

Preference learning has been widely employed to predict decision-makers’ preferences from historical information. 

This study develops a preference learning model for multiple criteria decision analysis where the decision-maker is 

supposed to be bounded rational and criteria are not completely independent of each other. The contextual Choquet 

integral is used as the aggregation function to address criteria interactions. The robust-ordinal-regression (ROR) 

technique is then applied to learn the preferences of decision-makers from the given preference data and provide 

robust decision recommendations. The proposed approach is illustrated by a numerical study concerning sustainable 

product evaluation. 

Keywords: Multiple criteria analysis; preference learning; compromise effect; interactive criteria; robust ordinal 

regression 

_____________________________________________________________________________________ 

1. Introduction 

Selecting the best alternative from a finite set of candidate alternatives evaluated against multiple criteria is an 

important multiple criteria decision making (MCDM) problem (Greco et al. 2016; Dhurkari 2022). For such problems, 

a decision-maker chooses the item with the largest utility. Expected utility theory, the most popular methodology for 

MCDM, explains the behavior of decision-makers under the assumption of rational choice: people always maximize 

expected utilities (Dyer et al. 1992). However, the rational choice theory has been challenged continuously. Numerous 

empirical studies on human cognition have documented the apparent irrational behaviors based on different 

assumptions of conceptual and perceptual processing (Howes et al. 2016). Among those behavioral anomalies, 

Compromise effect (or saying, extremeness aversion) is a widely observed form of bounded rational behaviors (Guo 

2016). There has been a great deal of research on developing and deploying methods to capture such irrational 

preferences in the fields of, for example, consumer behavior analysis (Kivetz et al. 2004) and marketing strategy 

(Guo 2016). These methods combined decision analysis and behavioral economics to capture compromise effect and 

identify the most preferred alternative or yield predications. These theories may give rise to collapse of using 

traditional MCDM methods which do not consider decision-makers’ irrational behaviors. 

MCDM applications commonly utilized the additive preference model (Keeney & Raiffa 1976; Greco et al. 

2008; Reimann et al. 2017). In this model, each alternative is first evaluated among a set of criteria. The overall value 

is then obtained as the sum of multiple values of the alternative over multiple criteria. A concern with the additive 

preference learning model is that, it is not particularly well-suited for handling interactions between criteria. 
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Consequently, the ordered weighted averaging (OWA) operator has been proposed to capture the permutation of all 

criteria values (Yager 1998; Reimann et al. 2017). It is worth highlighting that, even though Yager (1998) utilized 

aggregation functions to capture multicriteria preferences at alternatives, these aggregation functions were not 

directly used by the additive preference model. Further, results of Grabisch (1997a) showed that the OWA operator 

does not identify the positive (or negative) interactions among interactive criteria. Hence, although weighted value 

functions provide information about interactions, the additive preference model lacks a solid foundation to 

accommodate these interactions. 

We address these gaps in the existing literature by developing a contextual Choquet integral for MCDM with 

interactive criteria. Specifically, we show that with available information about interactions among multicriteria, 

these preferences can be represented with a concave aggregation function. Importantly, this aggregation function 

makes use of a fuzzy measure constructed over the whole set of criteria. It is able to accommodate the interactions 

that the additive value function fails to handle. Moreover, we establish results that identify the compromise effect 

under which a decision-maker has irrational choice behaviors. In the proposed aggregation function, the alternative 

utility is obtained as a weighted sum of multicriteria utilities. Our work provides continuation for the growing interest 

in developing MCDM with multicriteria interactions for various decision contexts. For instance, Labreuche and 

Grabisch (2006) developed a Choquet integral preference model for multiple criteria analysis, where the underlying 

scales were bipolar. Mayag and Bouyssou (2020) studied the interaction phenomena within a 2-additive Choquet 

integral model for the interpretation of decision making. Liao et al. (2020) produced a fuzzy Choquet integral operator 

to handle multicriteria interactions in fuzzy decision making. Singh and Kumar (2021) utilized a Choquet integral-

based method to represent preferences in multicriteria group decision making problems.  

In addition to the preference model, this paper also develops a preference learning approach that can be recast 

in terms of an optimization problem. The developed preference learning model is a variant of the general preference 

learning approaches, known as learning to rank in the field of machine learning (Hüllermeier et al. 2008; Bertsimas 

and O'Hair 2013; Aggarwal and Fallah Tehrani 2019). The basic idea of preference learning is to learn a preference 

model from decision-makers’ preference information. Preference learning has been naturally used in MCDM (Tehrani 

et al. 2012). For an alternative a  characterized by n  criteria values, the utility value of alternative a  can be modeled 

by an aggregation function ( )f  , such that 

(1) ( )( ) ( , , )nU a f a a=           (1) 

where ( )ja   is the evaluation value of a   under the j  th criterion. ( )f    can be used to predict the preference of a 
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decision-maker for any given pair of alternatives. 

Preference learning models with robust outcomes has been discussed and developed by scholars (Bertsimas & 

O'Hair 2013; Corrente et al. 2013; Bouaziz et al. 2021). In particular, Corrente et al. (2013) developed the robust 

ordinal regression (ROR) for robust preference learning using a precise representation of preference relations. This 

framework differs from the conventional preference learning since it assumes there exists necessary and possible 

preference relations simultaneously. Hence, the ROR method may help offer a robust recommendation to the 

decision-maker for further interactivity with a learning model. The ROR model has been successfully integrated with 

MCDM methods (Corrente et al. 2016). Several studies (Greco et al. 2014; Angilella et al. 2016; Arcidiacono et al. 

2020) used the ROR method to learn criteria interactions in MCDM problems. The focus of this paper is to develop 

an ROR preference learning model consistent with human behaviors and the criteria being not independent. 

The contributions of this study are as follows:  

(a) We incorporate the compromise effect into the preference model by inducing a concave aggregation operator. 

(b) A generalized Choquet integral is proposed to aggregate the values of alternatives under multicriteria that 

interact with each other. 

(c) The ROR preference learning model is developed to keep a balance between robustness and accuracy. The 

effectiveness of the proposed model is verified by a numerical study about the sustainable product evaluation.  

There has also been considerable interest in applying multiple criteria analysis to evaluate sustainability among, 

for instance, biomass crop (Cobuloglu & Büyüktahtakın 2015), metropolitan cities (Carli et al. 2018), supply chain 

development (Mastrocinque et al. 2020), and building structures (Sánchez-Garrido et al. 2022). The resulting models 

were often referred to as “MCDM” which consider multiple conflicting criteria in decision making. Indeed, even a 

power plant allocation problem may include more than 30 criteria (Erol et al. 2014). Because sustainability evaluation 

methods were motivated by applications of MCDM involving multicriteria, they depended on decision-makers’ 

preferences that determine how different criteria are valued. Many of these methods did not consider multicriteria 

interactions but rather assumed criteria are independent to each other. Further, in practice, decision-makers may have 

irrational choice behavior when facing a set of alternatives (Guo 2016; Howes et al. 2016; Aggarwal & Fallah Tehrani 

2019). This paper addresses these limitations by applying a contextual Choquet integral-based preference learning 

model which can identify interactions between multicriteria and capture decision-makers’ compromise effect. 

The study is organized as follows: Sect. 2 reviews the state-of-the-art of aggregation operators as the background 

of the present study. Sect. 3 introduces the contextual Choquet integral (CCI) and present the CCI operator that 

adheres to human behaviors. An illustrative example is given to motivate the introduction of the new method. Sect. 
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4 presents a preference-learning model based on the optimization approach. Sect. 5 provides a numerical study with 

respect to the sustainable product evaluation. Sect. 6 describes the extensions of our learning framework to a further 

interactive process and the extension of the CCI operator to machine learning. The paper was closed in the last section. 

2. Preliminaries 

Applying the expected utility theory to decision analysis, we can characterize the preferences of a decision-

maker through expected utility values. In the MCDM setting, a decision-maker may intuitively consider an 

aggregation process among the criteria utility values and determine her/his preferences among alternatives by the 

aggregated values. Specifically, this process can be typically characterized by an underlying aggregation function f : 

n → , such that for any pair of alternatives a  and b , a  is preferred to b  in the eyes of the decision-maker if and 

only if ( ) ( )f a f b . The simplest preference model, assigning a real number to each alternative, has an additive 

structure defined as (Keeney & Raiffa 1976): 

1

( ) ( )
n

j

j

f a u a
=

=            (2) 

where ( )ju a  is a marginal utility function with respect to the j th criterion and 1, ,j n= . The preference model 

shown as Eq. (2) is intuitive to aggregate n-tuple input to derive the overall value ( )f a  for alternative a . 

Since the traditional additive structure failed to model multicriteria interactions, the Choquet integral (Chquet, 

1954) has been taken as an alternative of the additive value function. Let  1 2, , , nG g g g=  be a finite set of criteria. 

Consider an importance measure  : 2 0,1G →  that returns a real value on the set G. ( )A  is interpreted as the 

weight of the set of criteria A G  . In the case of weighted arithmetic mean, the weights of coalitions can be 

represented in an additive form, i.e., 
1 2 1 2({ , }) ( ) ( )g g g g  = +  where criterion 

1g  and criterion 
2g  do not interact 

with each other. However, in the real world, the assumption that criteria are completely independent is too strong to 

satisfy. A famous example illustrating the interactions among criteria has been described in Grabisch (1996): if a 

student is evaluated with respect to two subjects, such as mathematics and physics, then the importance of the 

coalition of these two subjects should be lower than the simple sum of the weights of them. The example was based 

on an intuitive assumption that students with good performance in mathematics would also perform good in physics, 

and vice versa. In this regard, the importance of two sets of criteria can be represented as 

( ) ( ) ( ) ( , )A B A B I A B   = + +  where ( , )I    refers to the interaction index.  

Considering the limitation of additive models in expressing the real relations between decision criteria, the fuzzy 
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measure (Sugeno, 1974) was introduced to represent the importance associated to a set of criteria, where 

( ) 0  = , ( ) 1G =  and ( ) ( )A B   if B A G        (3) 

Since it is used to represent the importance of a set of criteria, the fuzzy measure can capture the interactions of 

associated criteria. Yet, it is difficult to determine the interactive relations using the theoretical form in Eq. (3) directly. 

An alternative representation of the fuzzy measure is the Möbius transform (Rota 1964), which is a linear transform 

on the fuzzy measure: 

( ) ( )
A B

B m A


= , for any 2GB          (4) 

The invertible transform of the Möbius representation in Eq. (4) can be expressed as: 

( ) ( 1) ( )
A B

B A

m A B
−



= −           (5) 

where | |A  indicates the cardinality of the set A .  

However, it is still difficult to manipulate the transformed form of fuzzy measure directly, because if there are 

multiple criteria involved, the fuzzy measure needs | |2 G  coefficients to be determined. It is reasonable to consider the 

interaction only between two criteria rather than among n-tuples of criteria in an MCDM process. In this regard, the 

2-additive fuzzy measure was proposed to capture the situation where a decision-maker can give the information in 

terms of positive or negative interactions between pairs of criteria, shown as (Grabisch 1997b; Corrente et al. 2016):  

{ , }

( ) ({ }) ({ , })
j j k

j j k

g B g g B

B m g m g g
 

= +         (6) 

where 
jg  and 

kg  are two interactive criteria. In this way, the number of parameters reduces to ( )2

nn +  in the 2-

additive fuzzy measure and the conditions in Eq. (3) are rewritten as: 

( ) 0m  = , 
{ , }

({ }) ({ , }) 1
j j k

j j k

g G g g G

m g m g g
 

+ =   

({ }) 0jm g  , and ( ) ({ , }) 0
k

j j k

g T

m g m g g


+  , jg G   and \{ }jT G g    (7) 

In MCDM problems, a decision-maker does not always treat the aggregation process as a weighted sum of 

utilities of different criteria but considers different combinations (coalitions) of criteria. That is to say, the decision-

maker may consider interactions among criteria. Positive interactions increase the importance of a combination, while 

negative interactions reduce the importance of a combination. In this regard, the varying degrees of interactions can 

be represented by the fuzzy measure ( )  , which induces two interaction indices as we show next. 

Grabisch (1997b) introduced the concept of Shapley value to represent the criteria importance by considering 

the average contribution of a criterion to the whole set of criteria, which can be expressed by ( )  . Given that   is 
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a fuzzy measure on G, the importance index of criterion 
jg  can be represented by the Shapley value (Shapley 1953): 

/{ }

( 1)! !
({ }) ( ( { }) ( ))

!
j

j j

A G g

n A A
g A g A

n
  



− −
=  − , for 1,2, ,j n= .      (8) 

The Shapley value satisfies that 0 ({ }) 1jg   and 
1

({ }) 1
n

j

j

g
=

= . These properties are similar to the weights 

in conventional additive operators. Thus, ({ })jg  has an intuitive interpretation as a measure of relative importance 

of criteria. For the 2-additive fuzzy measure, it can be written as: 

/{ }

1
({ }) ({ }) ({ , })

2
k j

j j j k

g G g

g m g m g g


= +           (9) 

On the other hand, the interaction index ({ , })j kI g g , taking into account the interaction between two criteria 

jg  and 
kg , is proposed by Murofushi and Soneda (1993) and defined as follows: 

\{ , }

( 2)! !
({ , }) ( ( { , } ( { }) ( { }) ( ))

( 1)!
j k

j k j k j k

A G g g

n A A
I g g A g g A g A g A

n
   



− −
=  −  −  +

−
     (10) 

where ({ , })j kI g g   -1,1], indicating the positive (resp. negative) interaction if ({ , }) 0j kI g g    (resp. 

({ , }) 0j kI g g  ). Furthermore, the interaction index can be rewritten with the aid of the Möbius transform: 

\{ , }

1
({ , }) ({ , } )

, 1
j k

j k j k

T G g g

I g g m g g T
T

= 
+

        (11) 

Choquet integral is a popular operator to capture the interactions among criteria. Given a fuzzy measure  , the 

Choquet integral is a mapping C : [0,1] [0,1]n →  that integrates n-tuple values into a comprehensive value. The 

Choquet integral of 1( , , ) n

nx x x=   is defined as: 

( ) ( ) 1

1

( ( ) ( ))
n

j j j

j

C x x A A    +

=

= −        (12) 

where ( )   is a permutation of the indices of criteria such that (1) ( )nx x   , ( ) ( ){ , , }j j nA x x =  and 
1nA + = . 

jA  is the subset of 1n j− +  largest components in x . 

In MCDM, the utility of alternative a  against criterion jg  is identified as ( )jf a . The aggregated utility values 

using the fuzzy measure   can be represented by an aggregation function ( )C f , shown as: 
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( )1 ( ) 1

1

( ), , ( ) ( )( ( ) ( ))
n

n j j j

j

C f a f a f a A A    +

=

= −       (13) 

where ( )   indicates a permutation of the criteria such that 
(1) ( )0 ( ) ( )nf a f a    . 

For independent criteria, the Choquet integral reduces to the weighted mean operator, represented as: 

( )1

1 1

( ), , ( ) ( ) ({ }) ( )
n n

n j j j j

j j

C f a f a f a g f a w 
= =

=  =          (14) 

where 
jw  is the weight of the criterion 

jg . In this case, ({ })j jw g=  and ({ })jg  indicates the importance of 
jg . 

An alternative form of Eq. (14) can be deduced from the weighted sum with the fuzzy measure as follows: 

( )1

1

( ) ( 1) ( ) ( )

1

( ) ( 1)

1

( ), , ( ) ( ) ({ })

( ( ) ( )) ( ({ }) ... ({ }))

( ( ) ( )) ( )

n

n j j

j

n

j j j n

j

n

j j j

j

C f a f a f a g

f a f a g g

f a f a A



   

 



 



=

−

=

−

=

= 

= −  + +

= − 







  (15) 

where ( ) ( ){ ( ), , ( )}j j n
A f a f a

 
=  and 

(0) 0f = . Using the Möbius representation of fuzzy measure, we present the 

Choquet integral in Eq. (15) as follows: 

( )1( ), , ( ) ( )min ( )
j

n j
g T

T G

C f a f a m T f a




=        (16) 

We will use this form in the optimization problem. To illustrate the computation of the Choquet integral, we 

give a simple example that a house buyer evaluates the house a  considering its performances on two criteria, prize 

and size, in  0, 1] scale. The evaluations of the house are expressed as follows: ( ) 0.6pricef a = , ( ) 0.8sizef a = . To 

represent the criteria importance and interaction, the buyer sets ({ }) 0.4price =  , ({ }) 0.3size =  , 

({ , }) 1price size = . Using Eq. (15), the aggregated value of a  by the Choquet integral is computed as: 

( ) ( ) ({ , }) ( ( ) ( )) ({ }) 0.66price size priceC a f a price size f a f a size  =  + −  = .    (17) 

The Möbius representation m  in terms of the fuzzy measure   can be given as ({ }) 0.4m price = , ({ }) 0.3m size = , 

({ , }) 0.3m price size = . ({ , }) 0m price size   denotes the positive interaction between the criteria price and size. The 

preceding computation can be rewritten by Möbius transformations as: 

( ) ( ) ({ }) ( ) ({ }) min( ( ), ( )) ({ , }) 0.66price size price sizeC a f a m price f a m size f a f a m price size =  +  + = .   (18) 

3. A contextual Choquet integral preference model 
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According to behavioral economics, decision-makers do not always adhere to the law of value maximization, 

rather often choose a nonoptimal alternative. The conventional preference models incorporating the Choquet integral, 

are based on the value maximization assumption, which cannot model the preference reversal phenomena in the real 

world. In other words, the Choquet integral can consider the interactions of criteria but ignores the behavioral 

characteristics of individuals. In this regard, inspired by the compromise effect reported in the literature (see 

Simonson and Tversky 1992; Guo 2016; Howes et al. 2016), this section proposes a contextual Choquet integral-

based preference model which takes into account not only the criteria interactions but also the behavioral 

characteristics in human decision making processes. 

The contextual Choquet integral is a generalization of the classical Choquet integral and is capable of modeling 

the behavioral characteristics of a decision-maker regarding criteria interactions. Our approach assumes that the 

aggregation function has a parametric structure to represent the decision-maker’s behavioral characteristics through 

the degree of compromise effect which can be characterized by a concave function that maps criteria values to 

psychological responses (Kivetz et al. 2004). In other words, the aggregation process considers the effect of irrelevant 

alternatives in pairwise comparisons. Depending on different parameter values, we can obtain different aggregated 

scores in two comparisons for the same pair of alternatives, compatible with the compromise effect (Tversky and 

Simonson 1993). We propose an aggregation operator called the “contextual concavity” by combining the notions of 

context dependence and concavity mathematically.  

Let 
1 2{ , , , }ma a a=  be a set of alternatives and S   be a reference set included in the whole set. a b , 

for any ,a b S  , means a preference that the decision-maker prefers a   to b  . Formally, the contextual Choquet 

integral is defined as a mapping CCI: [0,1] [0,1]n → , given by: 

min,

1 2 1 ( ) ( )

1

( , , , ) ( ( ) ( )) ( )
n

S

n j j j j

j

CCI x x x A A x x 

   +

=

= −  −           (19) 

where 
min,

( )

S

jx  is the lowest value on criterion ( )jg  for a reference set S  and   is the concavity parameter with 0  .  

The contextual concavity leads to a concave aggregation function on the consequences, such as the power 

function in Eq. (19) where 0 1  . Eq. (19) uses fuzzy measure   and parameter   to capture the mentioned two 

effects, where    represents the degree of interaction and    indicates the degree of compromise effect of the 

decision-maker.    reveals the sensitivity degree of the decision-maker on the extreme values of criteria. For an 

extremeness seeking decision-maker (Simonson and Tversky 1992), the extreme alternative with maximum or 

minimum criteria values is more desirable than intermediate ones. Conversely, an extremeness aversion decision-
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maker displays a preference for intermediate alternatives. That is, the decision-maker makes trade-off among criteria 

and choose an alternative with the best overall performance on all criteria. A bad performance on a criterion would 

lead to a great reduction on the overall score and gives rise to the preference reversal phenomenon. 

An equivalent representation of CCI in terms of the Möbius transform is expressed as: 

min,

1 2( , , , ) ( ) min( )S

n j j
j T

T G

CCI x x x m T x x 




=  −  .      (20) 

If we represent the criteria values by utility functions, then, Eq. (20) can be rewritten as: 

min,

1 2( ( ), ( ), , ( )) ( ) min( ( ) ( ))S

n j j
j T

T G

CCI f a f a f a m T f a f a 




=  −        (21) 

where min, ( )S

jf a  indicates the minimum utility value of alternative a  under criterion 
jg  for the reference set S .  

From the preference-learning point of view, learning the parameters in CCI from available preferences to 

estimate the value function is the main concern. Next, we provide several intuitive observations with respect to the 

concavity parameter   prior to the introduction of our learning model. In many cases,   is expected to be smaller 

than one as the compromise effect refers to a concave function. In other words, CCI can explain the compromise 

effect only when 1  . In this case, the lower parameter value implies that the decision-maker is more sensitive to 

the extremeness aversion. However, the impact would reduce in the situation where the decision-maker has clear 

preferences and positive responses to uncertainty. When 1 = , 
min,

1 ( ) ( )

1

( ( ) ( )) ( )
n

S

j j j j

j

CCI A A x x   +

=

= −  −  reduces 

to the conventional Choquet integral with normalized criteria values. If 1   , Eq. (19) would constitute an 

extremeness seeking preference structure, which implies that the decision-maker concentrates on the alternatives with 

extremely good performances on some criteria. 

In the real world, the behavioral characteristics largely impact decision-maker’s preferences and in particular 

may cause the preference reversal. Interaction among criteria is another important consideration in MCDM problems. 

In this regard, the CCI operator models these two effects at the same time. To explain the effectiveness of the CCI, 

this section gives an example concerning the behavior of a house-buyer and then compare the CCI with the 

conventional Choquet integral.  

Example 1. Suppose that a house-buyer wants to choose a house from three alternatives which are evaluated on 

price, size and comfort, as shown in Table 1. Without loss of generality, we define all criteria on a common gain scale 

 0, 1]. The output is an overall score between zero and one, corresponding to the degree of an individual’s preference 

to a house. The buyer considers that the three criteria have the same importance; the criteria size and comfort have 

negative interaction; the remaining pairs of criteria have positive interaction. For the sake of simplicity, we assume 
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that the Möbius values, which will be determined by the preference-learning technique described in the next section, 

are shown in Table 2. In this example, we consider the CCI with parameter 0.473 =  ( 1  ). This is because a 

previous behavioral science experiment had shown that such a value can distinctly capture the contextual concavity 

in decision-makers’ preference structure (Kivetz et al. 2004). We shall use the same data in the classical Choquet 

integral model that only captures criteria interactions but not the compromise effect.  

Table 1. Evaluations of the houses on three criteria 

House Price (Pr)  Size (Si) Comfort (Co) 

1H  0.6 0.9 0.8 

2H  0.7 0.8 0.8 

3H  0.8 0.7 0.8 
 

Table 2. Möbius representation of the fuzzy measure 

({ })m Pr  ({ })m Si  ({ })m Co  ({ , })m Pr Si  ({ , })m Pr Co  ({ , })m Si Co  

0.3 0.3 0.3 0.3 0.1 -0.3 
 

By Eqs. (16) and (21), we can compute the aggregated scores of the three alternatives. Table 3 lists the aggregated 

scores with respect to the weighted arithmetic mean, the classical Choquet integral and the CCI. Taking 
1H  as an 

example, using the CCI, the score of 
1H  is obtained as follows: 

0.473 0.473 0.473 0.473 0.473

1

0.473 0.473 0.473 0.473

( ) 0.3 min({0 }) 0.3 min({0.2 }) 0.3 min({0 }) min({0 ,0.2 })

min({0 ,0 }) min({0.2 ,0 }) 0.140

0.3

0.1 0.3

CCI H =  +  +  + 

 − =+ 
 

Table 3. Aggregated scores based on the weighted arithmetic mean, Choquet integral and CCI 

House  Weighted arithmetic mean Choquet integral  CCI  

1H  0.77 0.69 0.140 

2H  0.77 0.73 0.303 

3H  0.77 0.77 0.140 

 

From Table 3, it is clear that the Choquet integral imply 
3 2 1H H H . Conversely, the CCI leads to the reversal 

preferences 
1 2 3H H H .  

Figure 1 illustrates how the CCI operator captures the compromise effect but the classical Choquet integral might 

fail to. The CCI is better for capturing decision-makers’ behavioral characteristics concerning the preferences of 

intermediate alternatives. It can be attributed to the flexibility of this model in rescaling the original utility space. 

That is, the CCI can change the aggregation process by rescaling the criteria values with an adjustable parameter. For 

instance, the decision-maker’s difference between the score obtained from an intermediate alternative and that 

derived from extreme alternatives can be captured by the CCI. Panel A indicates the utility values under the criterion 
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Pr, and panel B indicates the utility values under the criterion Si. For simplicity of exposition, we assume that the 

decision-maker has linear functions on criterion levels. Therefore, in panels A and B of Fig. 1, there are two straight 

lines (green ones), which represent the linear utilities used by the classical Choquet integral. However, The concave 

lines (orange ones) used by CCI operator represent the utility values of an extremeness-aversion decision-maker 

associated with a concavity parameter 1  . In panel C of Fig. 1, using classical Choquet integral and CCI, we 

aggregate the utility values across the two criteria to form the graphs of the overall scores of the alternatives. Fig. 1 

reveals an apparent preference reversal (
2 3H H ) using the CCI operator. As we can see, the CCI is convenient to 

represent the compromise effect in the decision process, thus resulting in a flexible model compared with the classical 

Choquet integral. 

 

Fig. 1. The aggregation process modeled by the CCI operator and the classical Choquet integral operator 

Notes: x  axis denotes the three alternatives 
1 2 3( , , )H H H , and y  axis denotes the utility values or aggregated scores of 

the alternatives.  

More generally, the CCI operator is better to represent the decision-makers’ preferences with respect to the 

intermediate alternatives against the extreme alternatives than the classical Choquet integral. Considering the 

invalidity of using the classical Choquet integral in the previous example, the house-buyer might wonder whether it 

is possible to capture her/his preferences through changing the interaction indices among the three criteria. 

Unfortunately, the classical Choquet integral cannot represent the preferences of the house-buy with respect to the 

intermediate alternatives. Indeed, aggregating the utility values by the classical Choquet integral should imply that 

2( ) 0.7 ({ }) 0.8 ({ }) 0.8 ({ }) 0.7 ({ , }) 0.7 ({ , }) 0.8 ({ , })CI H m Pr m Si m Co m Pr Si m Pr Co m Si Co= + + + + +   

3( ) 0.8 ({ }) 0.7 ({ }) 0.8 ({ }) 0.7 ({ , }) 0.8 ({ , }) 0.7 ({ , })CI H m Pr m Si m Co m Pr Si m Pr Co m Si Co= + + + + +  

By the difference of the two aggregated scores we have 

2 3( ) ( ) 0.1 ({ , }) 0.1 ({ , })CI H CI H m Pr Co m Si Co− = − +  
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and clearly, since ({ , }) 0m Pr Co   and ({ , }) 0m Si Co  , 
2 3H H  (

2 3( ) ( )CI H CI H ) for all ( )m A , 2GA . In that 

case, the preferences on the intermediate alternatives (or compromise effect) cannot be represented by the classical 

Choquet integral. Geometrically speaking, the CCI adds the additional concavity on the context-independent Choquet 

integral (see Eq. 13). That is, regardless the initial shape of a classical Choquet integral operator, the CCI adds another 

layer of concavity based on the context. As a result, in the process of aggregation, the overall score of an alternative 

would be changed a lot and eventually cause the preference reversal (e.g., 
1 2 3H H H ), which is consistent with 

the hypothesis of the extremeness aversion . 

4. A learning model with robust ordinal regression 

From Section 3.1, we can find that the magnitude of the context dependence of a decision-maker is represented 

by the concavity parameter   ( 1  ). In such a case,   reshapes the utility function in Eq. (13) and eventually gives 

rise to the concavity on the aggregation function. Depending on different values of  , the same set of input data can 

be integrated into a range of scores. This motivates us to learn the aggregation function CCI that is characterized by 

parameters to represent a decision-maker’s specific sensitive degree of extremeness aversion. In this section, we try 

to achieve this goal of parameter learning through a recently emerging technique, the ROR.  

4.1. A robust ordinal regression model 

The ROR is a special preference learning-based technique to offer robust results in terms of preference relations. 

The main idea of this approach is to use all compatible value functions rather than to arbitrarily select a single value 

function to represent the decision-maker’s preferences, such that all the known preference information can be used 

in the final decision. Inspired by this idea, we use the parametric value function, i.e., the CCI, for preference learning. 

Consider a reference set S   where each alternative a S  is defined on n  criteria, denoted by {1, , }G n= . 

We define a set of preference tuples as {( , ) | ,1 }i i i ia b a b i M=   , where M  is the number of preference pairs 

generated from S, taken as the inputs of our model. Furthermore, considering the criteria interactions marked by the 

interaction index given in Eq. (11), one can easily incorporate the preference information of criteria (i.e., the 

interaction and the importance of criteria) into the learning problem, fed also as inputs of our learning model. The 

learning system is to infer the CCI that can reproduce the decision-maker’s preferences. Such a set of value functions 

 

1 Tversky and Simonson (1993) claimed that decision makers often choose intermediate options rather than extreme ones. They 

interpret this phenomenon as “extremeness aversion” which leads to two effects: compromise and polarization. 
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is called compatible value functions. From the optimization point of view, we aim to determine all parameters   of 

the compatible value functions such that the resultant preference relations are the most representative 

recommendations for input data.  

To do so, we choose the CCI as an aggregation operator to approximate decision-makers’ preferences. In the 

MCDM context, we consider that the CCI is defined on a set of criteria {1, , }G n=  and characterized by the fuzzy 

measure ( )   . In this sense, the Möbius transform given as Eq. (4) would be used in the model because of its 

convenience of computation. To learn the values of ( )m  , we consider a set of constraints SE . Formally, define the 

constraints SE  as 
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where *   is defined on G G  , denoting the preferences on criteria importance. That is, for criteria ,j k G  , if 

*j k , then it could indicate that criterion j  is more important than criterion k . Note that the value of   depends 

on the compromise effect that in decision-maker’s preference behavior, which is required to be specified beforehand. 

Hence, for constraints (22),    is a constant that is essentially different from the tuning hyperparameter used in 

machine learning. 

To verify whether there exists a compatible value function, we introduce a slack variable for a transformation of 

the strict inequalities in 
SE . This leads to the following optimization problem: 

* max =  
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where   is an arbitrarily small positive value used to transform the strict inequality into weak inequality constraints. 

SE

 is to convert the preference statements of a decision-maker into an evaluation space. We have a set of compatible 

value functions ,   if there exists a nonempty polytope defined by the set of constraints SE

; that is, if * 0  , 

there exists at least one capacity compatible with the decision-maker’s preferences. For an empty polytope, one can 

conveniently resolve inconsistencies among the constraints through accessible methods among which the most 

popular one is the 0-1 mixed integer programming-based method (Greco et al. 2010).  

Each compatible value function may return different total rankings when there exists more than one value 

function. In this regard, we find the emerging ROR technique potentially useful for this arbitrariness (see Greco et 

al. 2008), which considers all compatible value functions instead of using a single value function. This helps to apply 

all the preference information of a decision-maker to reach a final recommendation through the necessary and 

possible preference relations. 

4.2. A preference learning model 

A robust preference learning is to distinguish necessary and possible preference relations by a set of compatible 

value functions instead of using a single value function with optimal parameters. Corrente et al. (2013) showed that 

for a set of plausible values of parameters of the value function, the ROR technique can lead to robust preference 

relations for a set of alternatives. In particular, the robustness emphasizes a necessary preference such that the 

necessary preference of any pair of alternatives is stable across the compatible value functions, in spite of slight 

variations among the value functions. On the other hand, it diminishes the possible preferences when new preference 

information is added to the reference set. From a preference-learning viewpoint, this significantly facilitates the 

learning of robust rankings.  
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In the context of MCDM, we consider a finite number of pairwise preferences in the form of * *( , )a b   . 

With the compatible value functions obtained from the preceding optimization problem, we here add a new constraint 

of each preference tuple * *( , )a b  such that * *a b  if * *

, ,( ) ( )CCI a CCI b    , where , ,CCI    . Based on 

the new constraints, we define two different binary relations that are able to be inferred from the learned compatible 

value functions, shown as: 

 The necessary preference relation N  , such that * *Na b   iff for all compatible value functions, 

* *

, ,( ) ( )CCI a CCI b    . 

 The possible preference relation P  , such that * *Pa b   iff for at least one compatible value function, 

* *

, ,( ) ( )CCI a CCI b    . 

The main idea of our model is to distinguish two preference relations so as to derive a robust ranking of the 

given alternatives. To this end, we check the feasibility of the constraints by an optimization process which minimizes 

the misranking error. The margin of the misranking error is determined by maximizing the slack variable   . 

Specifically, we maximize the margin between the aggregated scores of alternatives *a  and *b  for a preference tuple 

* *a b . In this regard, we consider an additional pairwise comparison in Model (23) to verify the preference relation 

of * *( , )a b  through all compatible value functions , ,

SCCI    .  

Formally, check the necessary relation by solving the following optimization problem: 

*

* *
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Similarly, check the possible relation by solving the following optimization problem: 
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where   is a margin that is expected to be maximized. If * 0N   or S

NE

 is infeasible, we have a necessary preference 

relation that 
* *Na b  . If 

* 0P    or S

PE

  is feasible, we have a possible preference relation that 

* *Pa b  . 
* 0N   

implies that the preference tuple of 
* *( , )a b   can be characterized by all compatible value functions and 

* 0P   

indicates that the preference tuple of 
* *( , )a b  can be identified by at least one value function. Compared with the 
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necessary relation, the possible relation cannot reproduce the decision-maker’s preferences with all value functions 

in ,  . The above optimization problems involve a set of nonlinear constraints generated by the preference tuples 

of alternatives. 

We note that * 0N   indicates that the new additional inequality in Model (24) cannot be satisfied. In other 

words, for a preference tuple * *b a  , the necessary preference relations would be characterized by an empty 

polytope of the constraints for all compatible value functions. Consequently, the necessary outputs are robust to the 

partial preference information of a decision-maker, thus compatible with all instances. Conversely, the possible 

relation assumes that the new additional inequality in Model (25) can be achieved for at least one compatible value 

function. This model ensures a robustness analysis instead of finding an optimal solution by a single value function. 

As a result, the preference-learning problem is accomplished by two independent optimization problems. 

In summary, we conduct the preference learning process based on the CCI in the following steps: 

Step 1. Select a set of reference alternatives S  from the whole set . S  is chosen as a subset that provides a 

good balance between the ability of prediction and cognitive costs in the context-dependent choice.  

Step 2. From S , the decision-maker generates M  preference tuples in the form ( , )i ia b , such that 
i ia b . The 

decision-maker is also required to provide information of the multicriteria interactions.  

Step 3. An analyst is involved in the decision process to observe the compromise effect and specify the concavity 

parameter  . 

Step 4. The preference-learning model presented in Model (23) is solved on S  to learn a set of compatible value 

functions.  

Step 5. Analyst checks the preference inconsistency and decides whether to adjust the preference information or 

not. If it needs to be revised, go to the next step; otherwise, we skip to the last step. 

Step 6. The inconsistent pairwise comparisons (constraints 
SE

 ) are removed iteratively by following the 

procedure recommended by Greco et al. (2010) until there exists no inconsistent constraint. 

Step 7. Based on the compatible values functions, a robust decision recommendation is obtained by solving the 

optimization problems in Models (24) and (25). 

5. Numerical study concerning sustainable product evaluation 

In this section, we consider a sustainable product evaluation problem of the apparel industry to illustrate that our 

model can accommodate the compromise and interaction effects in the MCDM process. Since we intend to learn the 
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human decision behavior, a decision-maker would be invited to provide the preferences on the reference set S  . 

The reference set can be chosen from the whole set randomly or given by an analyst.  

5.1. Data collection 

In this section, we apply the proposed preference learning model to a problem of sustainable product evaluation 

based on the data set originally presented by Gloria et al. (2013). The data were collected from the Levi’s, one of the 

largest apparel corporations in the world, in terms of the life cycle environmental impact of a garment product. We 

focus on six impact criteria that are scaled to real numbers from 0 to 1. Although two criteria in the original matrices 

were not included, our present analysis may be effective because the results are not related to these criteria as shown 

in the original research. In this study, we consider 26 fabrics that were originally used by the Levi’s E-valuate TM

method to perform a life cycle assessment (LCA). We normalize the original data in Table 4 (for details, see Gloria 

et al. 2013). The values of the six life cycle impact criteria were collected from the garment mills on the material 

efficiency, water use, carbon emissions, land transformation and others. The six input criteria are described as follows: 

 Energy Use (EU), refers to the cumulative energy demand (MJ) in the manufacturing activities of 

producing the fabric. 

 Water Use (WU), refers to the freshwater usage (m3) minus the returned water with the same quality as the 

input freshwater. 

 Global Warming Potential (GWP), is measured by the greenhouse gas emissions (kg CO2-e) that is 

responsible for the climate change. 

 Eutrophication (ET), is measured by the phosphate emissions that lead to eutrophication (kg PO4-e) of the 

body of water. 

 Land Occupation (LO), refers to the land use (m2-year) of the manufacturing system, such as fiber 

production, yarn spinning, weaving, dyeing, cutting, sewing, finishing, and the transportation from raw 

material extraction through the factory gate. 

 Abiotic Depletion (AD), is measured by the nonrenewable resources (kg Sb-e) such as metals, conflict 

minerals, and fossil fuel. 

 

Table 4. The LCA values of 26 denim fabrics 

Fabric EU  WU GWP ET LO AD 

1a   0.5 0.5 0.5 0.2 0.3 0.5 

2a  0.5 0.5 0.4 0.2 0.3 0.5 

3a  0.9 0.9 0.9 0.8 0.9 0.9 
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4a  0.8 0.7 0.8 0.8 0.5 0.8 

5a  0.9 0.9 0.9 0.9 0.8 0.9 

6a  0.9 0.9 0.9 0.7 1.0 0.9 

7a  0.9 0.9 0.9 0.8 0.9 0.9 

8a  0.9 0.9 0.9 0.9 0.8 0.9 

9a  0.8 0.9 0.8 0.8 0.8 0.8 

10a  0.7 0.9 0.6 0.5 0.8 0.7 

11a  0.7 0.9 0.6 0.4 0.9 0.7 

12a  0.7 0.9 0.6 0.6 0.7 0.7 

13a  0.4 0.0 0.5 0.6 0.7 0.4 

14a  0.1 0.9 0.1 0.0 0.8 0.0 

15a  0.0 0.9 0.1 0.0 0.8 0.0 

16a  0.0 0.9 0.0 0.0 0.8 0.0 

17a  0.4 0.0 0.4 0.3 0.7 0.4 

18a  0.4 0.0 0.4 0.4 0.6 0.4 

19a  0.4 0.0 0.4 0.2 0.8 0.4 

20a  0.8 0.8 0.8 0.6 0.8 0.8 

21a  0.7 0.5 0.6 0.5 0.0 0.6 

22a  0.6 0.3 0.7 0.8 0.9 0.6 

23a  0.7 0.5 0.7 0.8 0.9 0.7 

24a  0.7 0.5 0.7 0.6 0.3 0.7 

25a  0.7 0.5 0.7 0.6 0.4 0.7 

26a  0.8 0.9 0.8 0.8 0.8 0.8 

Notes: Gloria et al. (2013) accessed the environmental impact of producing a square yard of denim fabric, and the evaluations 

refer to the material inputs, land use, resource extractions, and other emissions. Subsequently, they rescaled the assessments to 

the integer values from 0 to 10. Without loss of generality, we normalize the real data to the scale from 0 to 1. 
 

Suppose that a decision-maker of this corporation is invited to provide the preference information on the 

reference set S   . S   is defined as a subset of alternatives, for which the decision-maker can express her/his 

preferences on the subset. Note that the preference information is often incomplete because it is very hard for a 

decision-maker to identify all preferences of alternatives, even deciding the binary comparisons between alternatives 

is difficult in some situations. The decision-maker is also expected to provide preference information about the 

interactions between each pair of criteria as much as possible.  

The goal of preference learning is to translate the objective and subjective input data into the outcomes that the 

decision-maker can use directly. In this study, the preference learning can be accomplished by the decision-support 

model suggested in Section 4.2. The sustainability input data of this learning model are twofold: the objective utility 

values measured by the environmental impacts in the life cycle of a product and the subjective judgments with respect 

to individual’s preferences on the products and criteria. In this regard, a decision-maker of the Levi’s corporation was 
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provided a reference set 
3 5 6 7 8{ , , , , }S a a a a a=  and subsequently asked to determine the preference information, 

shown as follows: 

 The preference information of holistic binary comparisons of the five denim fabrics: 

- 
3a  is better than 

5a ; 

- 
3a  is better than 

6a ; 

- 
7a  is better than 

6a ; 

- 
7a  is better than 

8a . 

 The interaction information among couples of criteria: 

- criterion EU interacts with criteria GWP, ET and AD negatively; 

- criterion WU interacts with criteria LO and AD positively. 

Besides uncertain preferences, our proposed model helps us understand the unique behavior of the decision-

maker and deduce robust results, which can be illustrated in the next subsection. 

5.2. Applying the proposed learning model 

We perform the preference-learning model given in Section 4.3. Steps 1 and 2 have been accomplished through 

a preference elicitation process that requires the decision-maker to provide preference information as the input data. 

Therefore, we conduct the following steps in this section.  

To check whether there exists at least one compatible value function based on the decision-maker’s preferences, 

one can solve the optimization problem as follows: 

* max =  

 

 Considering the cognitive burden of the decision-maker, we select a reference set that consists of five alternatives having the 

same criteria values on four criteria and different values on the remaining two criteria. Particularly, to learn the underlying 

compromise effect, the decision-maker would be required to provide preferences on those nearly indifferent alternatives. 
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We have * 0.136 0 =  , which implies that there exists at least one value function consistent with the preference 

information of the decision-maker. We then perform Step 6 to compute the necessary and possible preference relations 

in terms of each pair of fabrics. The results are summarized in Tables 5 and 6.  
 

Table 5. Necessary preference relation in the set of fabrics 

Fabric  Fabrics with necessary preferences (
N )  

1a   
1a  

2a  
2a  

3a  
1 2 3 4 5 6 7 8 9 10 12 13 17 18 19 20 21 24 25 26, , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a  

4a  
1 2 4 17 18 21 24 25, , , , , , ,a a a a a a a a  

5a  
1 2 4 5 8 12 13 17 18 19 20 21 24 25, , , , , , , , , , , , ,a a a a a a a a a a a a a a  

6a  
1 2 4 6 10 11 12 13 17 18 19 20 21 22 23 24 25, , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a  

7a  
1 2 3 4 5 6 7 8 9 10 12 13 17 18 19 20 21 24 25 26, , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a  

8a  
1 2 4 5 8 12 13 17 18 19 20 21 24 25, , , , , , , , , , , , ,a a a a a a a a a a a a a a  

9a  
1 2 4 9 12 13 17 18 19 20 21 24 25 26, , , , , , , , , , , , ,a a a a a a a a a a a a a a  

10a  
1 2 10 11 12 17 18 19 21, , , , , , , ,a a a a a a a a a  

11a  
1 2 11 13 17 18 19 21, , , , , , ,a a a a a a a a  

12a  
1 2 12 17 18 19 21, , , , , ,a a a a a a a  

13a  
13 18,a a  

14a  
14 15 16, ,a a a   

15a  
15a   

16a  
16a   

17a  
17 18 19, ,a a a  

18a  
18a  

19a  
19a  

20a  
1 2 13 17 18 19 20 21 24 25, , , , , , , , ,a a a a a a a a a a  

21a  
21a  

22a  
1 2 13 17 18 19 22, , , , , ,a a a a a a a  

23a  
1 2 13 17 18 19 21 22 23 24 25, , , , , , , , , ,a a a a a a a a a a a  
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24a  
21 24,a a  

25a  
1 2 21 24 25, , , ,a a a a a  

26a  
1 2 4 9 12 13 17 18 19 20 21 24 25 26, , , , , , , , , , , , ,a a a a a a a a a a a a a a  

Notes: The fabric on the left column is necessarily preferred to the fabrics on the right. For example, in the last row, 
26a  is 

necessarily preferred to 
1a  and 

2a ; that is, 26 1

Na a  and 26 2

Na a .  
 

Table 6. Possible preference relation in the set of fabrics 

Fabric  Fabrics with necessary preferences (
P ) 

1a   
1 2 13 14 15 16 17 18 19 21 24, , , , , , , , , ,a a a a a a a a a a a  

2a  
1 2 13 14 15 16 17 18 19 21 24, , , , , , , , , ,a a a a a a a a a a a  

3a  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a a a  

4a  
1 2 4 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25, , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a  

5a  
1 2 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a  

6a  
1 2 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a  

7a  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a a a  

8a  
1 2 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a  

9a  
1 2 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a  

10a  
1 2 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a  

11a  
1 2 3 4 5 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a  

12a  
1 2 4 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25, , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a  

13a  
1 2 4 10 12 13 14 15 16 17 18 19 21 24 25, , , , , , , , , , , , , ,a a a a a a a a a a a a a a a  

14a  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a a a   

15a  
1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a a   

16a  
1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a a   

17a  
1 2 13 14 15 16 17 18 19 21 24 25, , , , , , , , , , ,a a a a a a a a a a a a  

18a  
1 2 14 15 16 18 19 21 24 25, , , , , , , , ,a a a a a a a a a a  

19a  
1 2 4 12 13 14 15 16 18 19 21 24 25, , , , , , , , , , , ,a a a a a a a a a a a a a  

20a  
1 2 4 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25, , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a  

21a  
1 2 12 13 14 15 16 17 18 19 21 22, , , , , , , , , , ,a a a a a a a a a a a a  

22a  
1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26, , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a  

23a  
1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a a  

24a  
1 2 10 12 13 14 15 16 17 18 19 21 22 24 25, , , , , , , , , , , , , ,a a a a a a a a a a a a a a a  

25a  
1 2 10 12 13 14 15 16 17 18 19 21 22 24 25, , , , , , , , , , , , , ,a a a a a a a a a a a a a a a  

26a  
1 2 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a  

Notes: The fabric on the left column is possibly preferred to the fabrics on the right. For example, in the last row, 
26a  is 

possibly preferred to 
1a , 

2a , 
4a , etc. 

 

From Tables 5 and 6, we observe that the fabrics 3 and 7 (
3a  and 

7a ) are the most preferred alternatives because 

they have the most number of necessary preferences relations as well as possible relations; on the contrary, the fabric 

18 is the least preferred ones. That is, the fabrics 3 and 7 can be considered as a set of robust recommendations that 

is exactly consistent with the results in Gloria et al. (2013), where they chose fabrics 3 as the best alternative. We 
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also observe several obvious preference reversals based on the learned necessary and possible relations, for example, 

10a  and 
12a  according to the results in Gloria et al. (2013). This preference reversal phenomenon exhibited in this 

study may be due to the merit of the preference learning model that considered the compromise effect. The previous 

method, however, cannot represent the compromise effect. In this regard, our learning model helps to better capture 

the decision-maker’s unique compromise effect in decision process. 

Fig. 2 displays the correlation matrices in terms of the learned multicriteria interaction from the CCI. In the 

graphs, x -axes and y -axes indicate the six criteria, all of which may be interactive to each other. Panel A of Fig. 2 

indicates a prominent tendency for inter-dependent criteria towards positive interaction, and Panel B also exhibits 

notable positive interaction. However, Panel C of Fig. 2 shows that the correlation between pairs of criteria is 

relatively arbitrary, leading to a roughly even distribution of cell color on the spectrum. It is reasonable to expect that 

using the classical Choquet integral would lead to three identical graphs to Panel C, because the classical Choquet 

integral merely provides possible relations among fabrics 17, 18 and 19 (see next subsection and Appendix C). 

In this sense, the apparent distortion of the first two images of Fig. 2 can be explained in the way that the CCI 

adds another layer of concavity on the aggregation process as explained in Section 3.2. The preference reversals are 

due to the concavity of the CCI that has proven to capture the decision-maker’s unique preferences on intermediate 

alternatives. If carefully observing the data in Table 4, it is easy to find that 
17a  is an intermediate alternative in the 

local choice set constructed by its neighbors saying 
17 18 19{ , , }S a a a= . The evaluation values of 

17a  are located in the 

middle position of the criteria ET and LO (i.e., 0.2 0.3 0.4  , 0.6 0.7 0.8  ). That is, the learned CCI function 

intensifies the utility of intermediate alternatives in the aggregation process and represents the positive interactions 

among criteria as shown in Panels A and B of Fig. 2. 

5.3. Comparative analysis with the classical Choquet integral  

In this section, we use the same real data for a fair comparison with the classical Choquet integral model to 

validate the performance of the CCI. First, we construct a Chqouet integral preference model based on the ROR 

technique and predict the preference relations. Second, we investigate the time complexity of the two methods using 

a randomly generated dataset. 

We use the same dataset and learning setting as given in this section for the performance validation. The classical 

Choquet integral-based learning model, presented in Appendix A, is constructed by replacing the aggregation 

function in our learning approach with the Choquet integral operator. The resultant optimization problem is solved 
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using the Matlab solver. The results of the classical Choquet integral model in terms of necessary and possible 

relations are reported in Appendix B. One can observe in Tables B.1 and B.2 that the classical Choquet integral fails 

to offer results (e.g., 
10 11

Na a ) that our approach has provided. Fig. 3 shows two preference graphs learning from 

the classical Choquet integral and CCI, respectively. As the graphs shows, the Choquet integral-based model (panel 

A) does not obtain enough necessary preference relations to determine the most favorable alternative or the third one, 

while the proposed model (panel B) does. In other word, only our approach can succeed in learning the decision-

maker’s individualistic behavior which is the unique preferences on intermediate alternatives. 

 

 https://www.mathworks.com/products/optimization 

https://www.mathworks.com/products/optimization.
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Fig. 2. Interaction heatmaps for three pairs of preference relations using CCI operator 

Notes: The colored cell refers to the interaction index ( )I  . Panels A and B show the degrees of criteria interactions based on the preference relations 17 18

Na a  and 17 19

Na a , 

respectively, while Panel C reduces to the possible relation 18 19

Pa a  where not all value functions are capable of reproduction of the preference relation. 
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A. classical Choquet integral        B. CCI 

Fig. 3. The preference graphs of necessary preference relations about six alternatives learned from  

the Choquet integral and CCI  

To illustrate how the classical Choquet integral leads to different preferences, we employ the correlation maps 

and include the same pairs of alternatives used in Fig. 2 (see Appendix C). Panels A and B of Fig. C show that, 

compared with the CCI, the classical Choquet integral learns a set of interaction indices which are all but evenly 

distributed in the maps. This means that it is easy to learn a value function associated with the classical Choquet 

integral but not all. Accordingly, the classical Choquet integral implies that 17 18Pa a  and 17 19Pa a , whereas the 

CCI implies that 17 18Na a  and 17 19Na a . Generally, the classical Choquet integral does not represent the decision-

maker’s preferences on intermediate alternatives and not provide robust preference relations over the three 

alternatives. 

5.4. Computational performance  

To investigate timing comparisons versus the traditional Choquet integral model, we report the computational 

time of these two approaches while comparing with a baseline. As a baseline, the additive value function is applied 

in the comparative analysis because it is the root of other aggregation operators. We generate a set of input data points 

randomly, each of which represents the utility of a fabric. We estimate the model based on different datasets and 

predict the necessary preference relations by learning the instances. This prediction procedure was repeated 20 times. 

The reported runtime is shown in Tables 7 and 8, using a varying number of criteria and alternatives. The results are 

twofold. First, the CCI and the Choquet integral require more computational efforts than the additive value function. 

This is because, when considering the interactions between criteria, the optimization problem has additional ( 1)n n −  

constraints on criteria interactions.  
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Table 7. Computational time of the proposed method and baseline methods with different numbers of alternatives 

Number of alternatives Method  Mean (s)  Min. (s) Max. (s) 

10 

Type 1 2.0976 1.9336 2.3254 

Type 2 1.9946 1.9153 2.0820 

Type 3 1.6592 1.5935 1.7761 

20 

Type 1 9.5840 8.7808 11.3457 

Type 2 8.7890 8.2657 9.7466 

Type 3 7.9616 7.3726 9.0197 

30 

Type 1 20.5436 19.2431 22.3362 

Type 2 17.6535 16.0703 19.6985 

Type 3 15.4615 15.3078 15.7284 

40 

Type 1 29.3458 28.2901 32.9958 

Type 2 28.1947 27.5243 29.1599 

Type 3 27.7372 27.2911 28.2858 

Note. Type 1: CCI; Type 2: Choquet integral; Type 3: additive value function 

Table 8. Computational time of the proposed method and baseline methods with different numbers of criteria 

Number of criteria Method  Mean (s)  Min. (s) Max. (s) 

4 

Type 1 12.6966 12.4419 13.1126 

Type 2 12.6489 12.3626 13.1137 

Type 3 12.2644 12.1116 12.5835 

6 

Type 1 12.2222 11.9815 12.7498 

Type 2 12.1729 11.8791 12.5693 

Type 3 11.8817 11.5133 12.3390 

8 

Type 1 12.9810 12.8426 13.4740 

Type 2 12.8816 12.7663 13.2476 

Type 3 12.2582 12.1612 12.6093 

10 

Type 1 13.0164 12.4197 14.8927 

Type 2 12.8430 12.1462 13.8447 

Type 3 12.2817 12.2105 13.9412 

Note. Type 1: CCI; Type 2: Choquet integral; Type 3: additive value function 

Second, the computing time of the learning model increases dramatically with the increase of alternatives, but 

it is not significantly affected by the number of criteria. The preference learning method is equivalent to solving an 

optimization problem where the constraints would increase ( 1)n n −  if n  new alternatives are involved (see Models 

(24) and (25)). However, the time complexity will increase only if more criteria interaction information is given by 

decision-makers. In this case, the number of constraints in Model (22) would also increase quadratically. 

6. Extensions 

In this section, we present two extensions of our approach. We first discuss the situation where the interactivity 

process is involved which requires the decision-maker to specify the preferences incrementally. The second part 

extends the CCI   to a data-driven construction to capture the decision-maker’s preferences through a machine-
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learning technique.  

6.1. Specifying preferences with an interactive process 

The idea of specifying preferences by an interactive model with the decision-maker in further iterations is not a 

fresh one. In the context of MCDM, there are literature on improving the initial solutions through subsequent 

iterations. The early appearance of the interactivity approach was based on the idea that a decision-maker is asked to 

provide additional preference information throughout the solution process. This can be seen as looking for a feasible 

additive value function satisfied the necessary constraints. Alternatively, a few recent studies suggested an 

interactivity process that the algorithm asks for reactions from decision-makers so as to make further estimation of 

the parameters of value functions.  

Similar to the process in Greco et al. (2013), when a necessary ranking is not enough to provide a final 

recommendation, we believe the decision model should accept additional constraints on the general value functions 

in order to explain the decision-maker’s reaction in the next iteration. Practically speaking, in this interactive process, 

additional preferences can be identified as an interactivity with the decision-maker who gives feedbacks on the results 

of the last iteration. Note that the decision-maker is often unable to provide a set of proper preferences in previous 

iterations, yet s/he can give possibly small pieces after perceiving a lack of necessary relations. 

Technically speaking, in each iteration, the additional pairwise comparisons can be treated as new constraints in 

the optimization problem shown as Model (23). When the new set of constraints S

tE

 are satisfied in a particular 

iteration t , {1,2, , }t l= , the model would narrow down the possible preference relations while enrich the necessary 

relations. Blow we propose an algorithm to extend our approach to implement the interactivity process.  

If a decision-maker wishes to consider that the additional preference is narrowing down necessary rankings, then 

the constraints 
SE

 presented in Model (23) can be extended to a new set of constraints by adding  

, ,( ) ( )CCI d CCI c    −           (27) 

where ( , )c d    is a pair of alternatives. This piece of new preference information could lead to a significant 

change in the constraints (22). The resultant S

tE

 needed for a non-empty polytope can be deemed as a narrowed set 

of constraints on the compatible value functions in the t th iteration. The partial preorders, including necessary and 

possible preference relations, can be derived easily by solving the optimization problems (24) and (25) after adding 

the new pairwise comparison. It is noticeable that the two preferences refer to the nested relations for the t th iteration 

such that 1

N N

t t−   and 1

P P

t t−  , and the set of compatible value functions are also embedded in the inverse order 
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diminished with the times of iterations such that 
1 l  . 

Considering the robust results in terms of two different relations, one can easily consider the interaction with the 

model to complement the necessary ranking and deteriorate the possible relations in order to provide a satisfactory 

recommendation. As a result, the interactivity approach lightens the decision-maker’s burden of providing too much 

information at the first stage of decision and helps understand the impact of an individual’s preference information 

on the learned preference relations. The proposed procedure allows the decision-maker to control the results in terms 

of necessary and possible preference relations, in which s/he is expected to provide more preference information to 

enrich the necessary ranking. 

6.2. Machine learning  

The CCI operator can also be extended to machine learning if a large amount of information about the decision-

maker’s preferences has been collected. In the previous numerical study, only a few pairwise comparisons are 

typically used as input data in the learning system. In the age of Internet, there often have hundreds of documents 

that come from the observation of decision-makers’ preferences. Recent studies have presented a preference learning 

method using machine learning (Hüllermeier et al. 2008). Our proposed aggregation operator can also combine with 

machine learning techniques. In this subsection, instead of using the ROR method, we extend CCI to the machine 

learning context to predict the preferences of decision-makers. 

We divide the data set into two parts, including training set 
train

 and testing set 
test

. For learning a mapping 

from pairwise comparison instances to ranking, the extended model first transfers pairwise preferences to learning 

labels. Specifically, we consider that the training set consists of pairwise preferences 
i ia b  on 

train train . Each 

alternative 
traina  is characterized by n  criteria, denoted by {1,2, , }G n= . We consider that each alternative is 

related to a ground-truth ranking based on the decision-maker’s preferences, denoted by a label 
i
  where 

1{ }m  . If the training data contain 
ia  and 

ib  associated with labels 
1 2{ , , , }m

, a set of preference tuples 

can be constructed as {( , ) | ,1 }i i i i i L=  a b a b  where L  indicates the number of pairwise comparisons in the 

training set 
train

. The task is to learn the optimal values of parameters in ,CCI   for representing the preference 

information in . 

In what follows, we describe an optimization problem that maximizes the margin of misranking errors. 
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The objective of Model (28) is to maximize the slack variable 
i  which is related to each pair of preference tuple 

( , )i ia b . In a recent study, Aggarwal and Fallah Tehrani (2019) proposed a version of preference learning used in 

kernel-based machine-learning methods. Specifically, the objective function in Model (28) is replaced by 

 
1, , ,

( , )

max { ( )}
| |L

i i

i i
 


 



− + a b

a b

          (29) 

where  indicates the margin to maximize the smallest utility difference for a pairwise preference 
i ia b . The 

slack variables i
a   and i

b   correspond to alternatives 
ia   and 

ib   for a preference tuple ( , )i ia b  .    is a trade-off 

parameter that ensures the flexibility of Model (28). Consequently, the constraint 
, ,( ) ( )i i iCCI CCI     +a b   in 

Model (28) can be replaced by a new inequality: 

, ,( ) ( )i i i iCCI CCI     −  − −a b
a b      ( , )i i a b     (30) 

Unlike our preference model, the extended machine learning model only makes use of those alternatives that 

have corresponding labels. In this sense, machine learning techniques are different from the multiple criteria analysis 

which belongs to decision support tools. We note that the preference learning in machine learning requires massive 

preference information as input data that may be difficult to obtain in practice. In addition, machine learning models 

usually have a tuning hyperparameter, i.e.,   in Model (29), which may lead to extra time complexity in the learning 

process. 

7. Conclusions 

This paper advances both the theory and practice of preference learning. In particular, the paper developed a 

Choquet integral-based preference learning model that can be used to support decision making in view of multiple 

interactive criteria and human’s irrational choice. The theoretical findings show that if multiple criteria are not 
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independent to each other and decision-makers’ choices are affected by the other alternatives, then these preferences 

can be represented by a concave aggregation function. This paper also developed an optimization model to identify 

the whole set of value functions compatible with the preference information. Moreover, the paper showed that 

preference learning techniques, differently from the conventional preference learning, can be used to find robust 

decision recommendations based on preference statements given by decision-makers. The application of the 

developed preference learning model to the real sustainable supply chain data set showed that the proposed approach 

can provide a set of robust decision recommendations that are compatible with decision-makers’ preferences. The 

comparison analysis suggested that the proposed approach outperforms the traditional Choquet integral model in 

both accuracy and computing aspects. 

There are still research questions that are beyond the scope of this study. The main bottleneck of the optimization 

problem in Model (23) is that the last inequation contains ( 1)n n −  constraints. The computational complexity of the 

model might cause difficulties in practical applications. There are several avenues for future research. First, empirical 

studies on how the changes of the concavity parameter   may affect the preference of individual alternative could 

help identify those approaches for representing the varying compromise effect that we have not considered. Second, 

we can see some prospects for preference learning in the rough set area, using the dominance-based rough set as 

suggested by Wallenius et al. (2008). Finally, helping organizations incorporate sustainability into marketing 

strategies and production decisions would be a promising application for further studies. 
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Appendix A. Classical Choquet integral-based preference model 

This approach suggests an aggregation process that is characterized by the underlying fuzzy measure ( )   for 

capturing the interaction among criteria. Our learning task becomes simple to determine ( )  . To do so, we express 

the Choquet integral using the Möbius transform shown as Eq. (4), constituting an identical representation of fuzzy 

measure, and then we learn the parameter of ( )m T  , T C   . We determine the parameter by minimizing the 

misranking error of the preference tuples a b . We seek to maximize the margin of misranking error, typically used 

in the ROR, and our preference learning task becomes a linear program: 
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cE

 is a set of constraints that only replace the aggregation function ,CCI   in 

SE

 with the Choquet integral 
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operator C  . The classical Choquet integral only considers the interaction effect among criteria but ignore the 

compromise effect. For a comparative purpose, the Choquet integral provides a natural baseline to illustrate the ability 

of the CCI operator for modeling the decision-makers’ compromise effect. 

Appendix B. The solved preference relations based the classical Choquet integral model 

Table B.1. Necessary preference relation in the set of fabrics 

Fabric  Fabrics with necessary preferences (
N )  

1a   
1a  

2a  
2a  

3a  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a a a  

4a  
1 2 4 13 17 18 19 21 24 25, , , , , , , , ,a a a a a a a a a a  

5a  
1 2 4 5 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25, , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a  

6a  
1 2 4 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a  

7a  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a a a  

8a  
1 2 4 5 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25, , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a  

9a  
1 2 4 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a  

10a  
1 2 10 13 14 15 16 17 18 19 21, , , , , , , , , ,a a a a a a a a a a a  

11a  
1 2 11 13 14 15 16 17 18 19 21, , , , , , , , , ,a a a a a a a a a a a  

12a  
1 2 12 13 14 15 16 17 18 19 21, , , , , , , , , ,a a a a a a a a a a a  

13a  
13 18,a a  

14a  
14 15 16, ,a a a  

15a  
15a  

16a  
16a  

17a  
17a  

18a  
18a  

19a  
19a  

20a  
1 2 4 13 17 18 19 20 21 24 25, , , , , , , , , ,a a a a a a a a a a a  

21a  
21a  

22a  
1 2 12 13 17 18 19 21 22, , , , , , , ,a a a a a a a a a  

23a  
1 2 13 17 18 19 21 22 23 24 25, , , , , , , , , ,a a a a a a a a a a a  

24a  
24a  

25a  
1 2 17 18 19 21 24 25, , , , , , ,a a a a a a a a  

26a  
1 2 4 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a  

 

Table B.2. Possible preference relation in the set of fabrics 

Fabric  Fabrics with necessary preferences (
P ) 

1a   
1 2 13 14 15 16 17 18 19 21 24 25, , , , , , , , , , ,a a a a a a a a a a a a  

2a  
1 2 13 14 15 16 17 18 19 21 24 25, , , , , , , , , , ,a a a a a a a a a a a a  

3a  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a a a  

4a  
1 2 4 10 11 12 13 14 15 16 17 18 19 21 22 23 24 25, , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a  
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5a  
1 2 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a  

6a  
1 2 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a  

7a  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a a a  

8a  
1 2 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a a  

9a  
1 2 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a  

10a  
1 2 4 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25, , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a  

11a  
1 2 4 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25, , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a  

12a  
1 2 4 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25, , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a  

13a  
1 2 13 14 15 16 17 18 19 21 24 25, , , , , , , , , , ,a a a a a a a a a a a a  

14a  
1 2 4 13 14 15 16 17 18 19 20 21 22 23 24 25, , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a   

15a  
1 2 4 13 15 16 17 18 19 20 21 22 23 24 25, , , , , , , , , , , , , ,a a a a a a a a a a a a a a a   

16a  
1 2 4 13 15 16 17 18 19 20 21 22 23 24 25, , , , , , , , , , , , , ,a a a a a a a a a a a a a a a   

17a  
1 2 13 14 15 16 17 18 19 21 24 25, , , , , , , , , , ,a a a a a a a a a a a a  

18a  
1 2 14 15 16 17 18 19 21 24 25, , , , , , , , , ,a a a a a a a a a a a  

19a  
1 2 13 14 15 16 17 18 19 21 24 25, , , , , , , , , , ,a a a a a a a a a a a a  

20a  
1 2 4 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25, , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a  

21a  
1 2 13 14 15 16 17 18 19 21, , , , , , , , ,a a a a a a a a a a  

22a  
1 2 4 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25, , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a  

23a  
1 2 3 4 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25, , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a  

24a  
1 2 10 11 12 13 14 15 16 17 18 19 21 22 24, , , , , , , , , , , , , ,a a a a a a a a a a a a a a a  

25a  
1 2 10 11 12 13 14 15 16 17 18 19 21 22 24 25, , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a  

26a  
1 2 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26, , , , , , , , , , , , , , , , , , , , , ,a a a a a a a a a a a a a a a a a a a a a a a  

Appendix C. The correlation matrices based on the classical Choquet integral model 
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Fig. C. Interaction heatmaps for three pairs of preference relations base on  

the classical Choquet integral 
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